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Delocalization transition of a rough adsorption-reaction interface
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We introduce a kinetic interface model suitable for simulating adsorption-reaction processes which take
place preferentially at surface defects such as steps and vacancies. As the average interface velocity is taken to
zero, the self-affine interface with Kardar-Parisi-Zhang-like scaling behavior undergoes a delocalization tran-
sition with critical exponents that fall into a different universality class. As the critical point is approached, the
interface becomes a multivalued, multiply connected self-similar fractal set. The scaling behavior and critical
exponents of the relevant correlation functions are determined from Monte Carlo simulations and scaling
arguments.

PACS number~s!: 05.70.Ln, 68.35.Ct, 68.35.Rh, 82.65.Jv
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Kinetically roughened interfaces display a rich pheno
enology, have deep connections with fields as diverse as
organized criticality, spin-glasses, and complex pattern
mation, and lend themselves to modeling various syste
with practical applications, ranging from heterogenous
talysis to geomorphology@1–4#. The huge amount of nu
merical and analytical effort that has recently been inves
in them has revealed that they obey universal scaling r
tions, which fall into one of a few universality classes. In th
paper we would like to present a kinetic interface mo
which exhibits an anisotropic to isotropic phase transit
with different scaling behavior at the delocalization critic
point.

Reaction fronts formed byA1B→B reactions in hetero-
geneous systems where the reaction takes place on a
dimensional substrate@5# are often confined to a narrow ‘‘re
active zone’’ especially if the reactants are either initia
segregated or become segregated due to reaction kin
@6–9#. Our present model is motivated by recent findin
@10,11# of high reaction rates and strong bonding at surfa
defects like steps and vacancies in studies of heterogen
catalysis, a burgeoning field in surface science.

We consider an idealized surface with only one step,
minating a terrace made up ofA particles~Fig. 1!. The sur-
face is exposed to two kinds of incoming particles,A andB,
which are allowed to adsorb at first contact, and only on s
adjacent to the step, which we will call ‘‘interface sites
The adsorption ofA particles makes the interface advanc
The adsorbingB particles, on the other hand, immediate
react with anA neighbor to form a product which leaves th
surface. This eats into the step, making the interface rec
We investigate the effect of changing the rate of inject
@12# of the two reactants. We do not allow any reactions
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take place with the substrate atoms. We assume, for sim
ity, that the temperature is low enough so that no surf
restructuring occurs; the bonding to the interface sites is
ficiently strong@13# for diffusion along the interface to be
prohibited. The kinetics is, therefore, driven by the adso
tion and reaction steps and not by the transport of the re
tants.

The model is defined on an infinite strip of widthL, on
which we impose periodic boundary conditions. The int
face is initially a perfectly straight line located ath50. The
system is driven weakly so that at any instant only one p
ticle of either theA or B type, with probabilitiespA or pB
512pA , impinges on the interface. As the interface mov
with a mean velocity equal toe[pA20.5, it roughens, and
becomes multiply connected, shedding ‘‘islands’’
‘‘lakes’’ in its wake. Asueu→0, the growth direction is com-
pletely delocalized, the width of the interfacial region kee
on growing indefinitely, and the interface breaks up into
isotropic fractal~see Fig. 2!. For finite L, there may exist
more than one spanning string of interface sites ate50; this
phenomenon is similar to the formation of Liesegang ba
@14#!. It is the purpose of this paper to understand the nat
of this delocalization transition, to describe the crossover
havior and to characterize the self-similar reactive reg
formed asueu→0.

For many interface problems with a well-defined grow
direction, such as the Eden@15# model, or the Edwards-
Wilkinson model@16#, where the interface can be describ

y,

s, FIG. 1. A terrace ofA particles, with the interface sites, ind
cated by dots, neighboring the step.
1102 ©2000 The American Physical Society
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PRE 61 1103DELOCALIZATION TRANSITION OF A ROUGH . . .
with a single-valued, self-affine curve. The scaling behav
of the interface width may be conveniently summarized
the scaling form@17#

w;tbg~ l /t1/z!, ~1!

where g(u);const for u,1 and ;ux for u@1; z is the
dynamical critical exponent, andb5x/z. Kardar, Parisi, and
Zhang~KPZ! @18# have found the valuesz53/2, x51/2, and
b51/3 for the stochastic differential equations describ
Eden growth ind5111. This set of critical exponents cha
acterizes a wide range of anisotropic growth phenom
with annealed noise@1#, and where the local velocity of th
interface increases with the slope. In the limit that the vel
ity goes to zero or is independent of the slope@3#, one gets
the Edwards-Wilkinson model@16#, which is exactly solv-
able ind5111 dimensions and falls into another univers
ity class, characterized byz52, x51/2, andb51/4.

Since our interface is typically multivalued we define t
width function within an interval of sizel as,

w~ l !25K 1

N~ l ! (
i

N(l )

@hi2h~ l !̄ #2L , ~2!

FIG. 2. The interface ate50, for early and later stages o
growth. The configurations for early times resemble the surfac
larger values ofe.
r
y

a

-

where hi is the height of the i th interfacial site, i

51, . . . ,N(l ), andh(l )̄ is the mean position of the inter
face. We findb51/3 for early times. In the limit ofpA50 or
pB50, i.e., for ueu→0.5, our model is equivalent to Ede
@15# growth, and indeed, along the singly connected part
the interfacex51/2 in the steady state. However, effectiv
roughness exponent (xeff) goes continuously to zero asueu
→0 as shown in Fig. 3.

The reason for this is that as we decreaseueu, the surface
becomes highly convoluted, with islands~or lakes! of all
sizes, and, therefore, increasingly multivalued. A compet
length scale emerges in the system, the ‘‘thickness’’ of
interface, which we can measure by the variance of
height,

y~ i !5S 1

ni
(
j 51

ni

~hi j 2hī !
2D 1/2

,

with ni being the number of interfacial sites$hi j %, above any
point i along the horizontal axis. The thickness obeys@19# a
skewed-Gaussian distribution. The averageyL[^y&L and the
second moment of this distribution both diverge asueu→0
with a critical exponentn50.5560.05.1/2, as;ueu2n. The
scaling form foryL is

yL;t b̃G~ ueu2n/t1/z!, ~3!

whereG(v);v for v,1 while for v.1, G(v);const with
b̃51/2 and the~longitudinal! dynamical critical exponentz
obeysz51/b̃. The thickness of just the singly connected p
does not diverge asueu→0, so that the disconnected par
make up almost all of the interfacial region at the delocali
tion transition@19#.

Normalizingw(l ) in Eq. ~2! by yL
1.1 yields a collapse of

the data for alle as can be seen from Fig. 4. We believe th
the small deviation of the power ofyL from unity is due to

at

FIG. 3. The effective roughness exponentxeff , for disconnected
parts of the interface included in (L) and excluded from (d) the
analysis;L<1024. The error bars are comparable to the size of
symbols.
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insufficient statistics foryL which converges extremel
slowly asueu→0 and may safely be neglected, and we co
clude

w~ l !;yL3H l 1/2/yL l 1/2@yL

const l 1/2!yL .
~4!

Thus, xeff goes to zero as the self-affine excursions of
interface are blurred by the thickness of the interface asyL
becomes greater thanl 1/2.

If one considers coarse-grained width functions, either
taking the average height at any given point or the maxim
@20# height fore.0 ~minimum fore,0), one finds that they
obey the scaling form~1! with KPZ exponents forl !L.

To get the local scaling picture, we focus on a sing
spanning string in the interface and consider

Cx~ l !5^@x~r 1 l !2x~r !#2&1/2, ~5!

Ch~ l !5^@h~r 1 l !2h~r !#2&1/2. ~6!

where bothr and l are the~‘‘chemical’’ ! length measured
along the string, andx andh are Cartesian coordinates of th
interface site. The scaling relations we have found from F
5 for these quantities are given below. In the transient reg
( l @t1/2),

Cx;H l yL! l 1/2

l /tc yL@ l 1/2 ~7!

and

Ch;tb, ~8!

wherec51/6.

FIG. 4. The width normalized by a power of the thicknessyL

very near unity, displays KPZ behavior forl 1/2/yL.1. The differ-
ent curves correspond to data taken ate50.001,0.003,0.005,0.01
0.05,0.1,0.2,0.3,0.4,0.5. The deviations from the smooth colla
are due tol becoming comparable to the system sizeL51024.
-

e

y

.
e

Note the horizontal projection of a segment of fixe
‘‘chemical length’’ decreases witht as the surface crumple
with time in the critical (ueu→0) region. In the steady state
( l !t1/2),

Cx;H l ~yL! l 1/2!,

l x isot ~yL@ l 1/2!,
~9!

and

Ch;H l 1/2 ~yL! l 1/2!,

l x isot ~yL@ l 1/2!.
~10!

We see that foryL@ l 1/2, the interfacial region becomes iso
tropic, with Cx;Ch . This regime is characterized by a
‘‘isotropic’’ roughness exponentx isot52/3. In the opposite
limit, Ch;Cx

1/2, as expected for the self-affine Eden surfa
This crossover is clearly seen in Fig. 6. In accordance w

se

FIG. 5. ~a! Ch andCx for e50.5 for l 52, . . . ,L/2, and different
times.~b! Ch in the isotropic region,e51024.

FIG. 6. The vertical projectionCh of sections of the singly
connected part, plotted as a function of the horizontal project
Cx .
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PRE 61 1105DELOCALIZATION TRANSITION OF A ROUGH . . .
the above observations we propose the following sca
functions for the whole range ofe. Defining u5 l /t1/z ands
5yL / l x, we have

Ch;ah~e!tb f ~u,s!,
~11!

Cx;ax~e!t1/zg~u,s!,

where

f ~u,s!;H const, u@1

ux, u!1, s!1

us1/z, u!1, s@1,

~12!

and

g~u,s!;H u, s!1

ux/s, u@1, s@1

s21/b̃z, u!1, s@1.

~13!

wherex, z, andb have their KPZ values. The amplitudes a
defined as ax(e)5(a1ueu1/6) and ah51/(a211ueu1/6),
wherea is some constant.

From these scaling forms and Eq.~3! we see that the new
critical exponents obey the relationships

c5b̃2
1

zKPZ1
xKPZ

zKPZ ~14!

and

x isot5zxKPZ/zKPZ, ~15!

which yields

x isot5bKPZ/b̃. ~16!

From Eqs.~9! and~10! we see that the graph dimension of
singly connected part in the isotropic regime isDg51/x isot.
Since in two dimensions,Dg is related to the roughness e
ponent viaDg522x, for x51/2 we getx isot52/3. The
-

gscaling relation~16! yieldsb̃51/2, from Eqs.~14! and~15! it
follows thatc51/6 andz52. The fractal dimension of the
self-similar set of interface sites@19# within a band of width
yL;ueu2n is found, from boxcounting, to beDI51.85
60.05 for length scalesl ,yL

2 .
In conclusion, we have presented an absorption-reac

model where the interface undergoes a delocalization tra
tion at the point where the mean velocity of the interfa
goes to zero. Although it might be conjectured@1# that as the
velocity of the interface vanishes, the scaling behav
should cross over to the Edwards-Wilkinson universa
class, this is not the case here. It has previously been
served@20,21#, that the presence of overhangs, islands a
inclusions may cause the small-scale structure of the in
face to crossover from being self-affine to self-similar wh
the large-scale behavior remains self-affine. In the pres
model, this crossover is driven by a competing length sc
the thickness of the interface, which diverges at the criti
point asueu2n with n51/2. In the critical region, the inter
face is characterized by a set of exponentsx isot52/3, b̃
51/2, z52, c51/6, and the fractal dimensionDI51.85.
Except forn andDI , these exponents may be obtained fro
the KPZ exponents via scaling relations.

It should finally be mentioned that the reaction region c
be described by stochastic differential equations of the m
tiplicative noise type with a single component field, since
our model interface sites cannot be created spontaneo
either in the bulk or the vacant region. A field-theore
renormalization-group computation similar to that by T
Grinstein, and Mun˜oz @22# is presently under way to obtai
the values of the critical exponents.
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