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Delocalization transition of a rough adsorption-reaction interface
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We introduce a kinetic interface model suitable for simulating adsorption-reaction processes which take
place preferentially at surface defects such as steps and vacancies. As the average interface velocity is taken to
zero, the self-affine interface with Kardar-Parisi-Zhang-like scaling behavior undergoes a delocalization tran-
sition with critical exponents that fall into a different universality class. As the critical point is approached, the
interface becomes a multivalued, multiply connected self-similar fractal set. The scaling behavior and critical
exponents of the relevant correlation functions are determined from Monte Carlo simulations and scaling
arguments.

PACS numbgs): 05.70.Ln, 68.35.Ct, 68.35.Rh, 82.65.Jv

Kinetically roughened interfaces display a rich phenom-take place with the substrate atoms. We assume, for simplic-
enology, have deep connections with fields as diverse as selty, that the temperature is low enough so that no surface
organized criticality, spin-glasses, and complex pattern forfestructuring occurs; the bonding to the interface sites is suf-
mation, and lend themselves to modeling various systeméiciently strong[13] for diffusion along the interface to be
with practical applications, ranging from heterogenous caprohibited. The kinetics is, therefore, driven by the adsorp-
talysis to geomorphology1—4]. The huge amount of nu- tion and reaction steps and not by the transport of the reac-
merical and analytical effort that has recently been investe&ants.
in them has revealed that they obey universal scaling rela- The model is defined on an infinite strip of width on
tions, which fall into one of a few universality classes. In thiswhich we impose periodic boundary conditions. The inter-
paper we would like to present a kinetic interface modelface is initially a perfectly straight line located lat=0. The
which exhibits an anisotropic to isotropic phase transitionsystem is driven weakly so that at any instant only one par-
with different scaling behavior at the delocalization critical ticle of either theA or B type, with probabilitiesp, or pg
point. =1-pa, impinges on the interface. As the interface moves

Reaction fronts formed b+ B— & reactions in hetero- with a mean velocity equal te=p,—0.5, it roughens, and
geneous systems where the reaction takes place on a twbecomes multiply connected, shedding “islands” or
dimensional substra{é&] are often confined to a narrow “re- ‘“lakes” in its wake. As|e|— 0, the growth direction is com-
active zone” especially if the reactants are either initially pletely delocalized, the width of the interfacial region keeps
segregated or become segregated due to reaction kinetios growing indefinitely, and the interface breaks up into an
[6-9]. Our present model is motivated by recent findingsisotropic fractal(see Fig. 2. For finite L, there may exist
[10,11 of high reaction rates and strong bonding at surfacemnore than one spanning string of interface sites=a0; this
defects like steps and vacancies in studies of heterogeneopbenomenon is similar to the formation of Liesegang bands
catalysis, a burgeoning field in surface science. [14]). It is the purpose of this paper to understand the nature

We consider an idealized surface with only one step, terof this delocalization transition, to describe the crossover be-
minating a terrace made up @&fparticles(Fig. 1). The sur- havior and to characterize the self-similar reactive region
face is exposed to two kinds of incoming particlésandB,  formed as/e|—0.
which are allowed to adsorb at first contact, and only on sites For many interface problems with a well-defined growth
adjacent to the step, which we will call “interface sites.” direction, such as the Ed€i5] model, or the Edwards-
The adsorption oA particles makes the interface advance.Wilkinson model[16], where the interface can be described
The adsorbingB particles, on the other hand, immediately
react with anA neighbor to form a product which leaves the
surface. This eats into the step, making the interface recede.
We investigate the effect of changing the rate of injection
[12] of the two reactants. We do not allow any reactions to
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TPresent address: Department of Physics of Complex Systems, FIG. 1. A terrace ofA particles, with the interface sites, indi-
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FIG. 3. The effective roughness exponggj, for disconnected
parts of the interface included in() and excluded from®) the
analysis;L <1024. The error bars are comparable to the size of the
symbols.

where h; is the height of theith interfacial site, i
=1,...N(¥), andh(/) is the mean position of the inter-
face. We find3=1/3 for early times. In the limit op,=0 or
pg=0, i.e., for|e|—0.5, our model is equivalent to Eden
[15] growth, and indeed, along the singly connected part of
the interfacey=1/2 in the steady state. However, effective
roughness exponeni{y) goes continuously to zero ds|
—0 as shown in Fig. 3.

The reason for this is that as we decrepgethe surface
becomes highly convoluted, with islandsr lakeg of all
sizes, and, therefore, increasingly multivalued. A competing
q'ength scale emerges in the system, the “thickness” of the
interface, which we can measure by the variance of the

height,
with a single-valued, self-affine curve. The scaling behavior g

of the interface width may be conveniently summarized by 10 112
the scaling forn17] y(i)=(— D (h; _h_i)z)
ni =1 ’

FIG. 2. The interface at=0, for early and later stages of
growth. The configurations for early times resemble the surface
larger values ok.

w~thg(/1tY?), (1)

with n; being the number of interfacial sit¢h;;}, above any
where g(u)~const foru<1 and ~uX for u>1; z is the Pointi along the horizontal axis. The thickness obg}d] a
dynamical critical exponent, an@= x/z. Kardar, Parisi, and skewed-Gaussian distribution. The avergge(y), and the
Zhang(KPZ) [18] have found the values=3/2, y=1/2,and  Second moment of this distribution both diverge|as—0
B=1/3 for the stochastic differential equations describingWith @ critical exponent=0.55+0.05~1/2, as~|e|~". The
Eden growth ind= 1+ 1. This set of critical exponents char- scaling form fory, is
acterizes a wide range of anisotropic growth phenomena B
with annealed noisgl], and where the local velocity of the yL~tPG(| e VI1tYe), (3
interface increases with the slope. In the limit that the veloc-

ity goes to zero or is independent of the sldB¢ one gets  whereG(v)~v for v<1 while forv>1, G(v)~ const with

the Edwards-Wilkinson modgll6], which is exactly solv- B=1/2 and thelonaitudinal dvnamical critical expone
able ind=1+1 dimensions and falls into another universal—’B ~ o g! udina) y. ! . " xponert
ity class, characterized ty=2, y=1/2, andg=1/4 obeys{=1/B. The thickness of just the singly connected part

Since our interface is typically multivalued we define thedoes not diverge abd%o.’ SO th?t the _dlsconnected parts
width function within an interval of size” as make up almost all of the interfacial region at the delocaliza-

tion transition[19].

L O Normalizingw(/) in Eq. (2) by y* yields a collapse of
/)2= h—h(/)]2), 2 the data for alle as can be seen from Fig. 4. We believe that
w(£) <N(/) EI thi=h(~)] j @ the small deviation of the power of from unity is due to
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FIG. 4. The width normalized by a power of the thickngss

very near unity, displays KPZ behavior fet/y, >1. The differ- Note the horizontal projection of a segment of fixed

ent curves correspond to data takeneat0.001,0.003,0.005,0.01, “chemical length” decreases withas the surface crumples

0.05,0.1,0.2,0.3,0.4,0.5. The deviations from the smooth collapsge .., .. . - .
are due to” becoming comparable to the system size 1024, With time in the critical (¢|—0) region. In the steady state,

(I<t'?),

insufficient statistics fory, which converges extremely I (y <IY?)
slowly as|e|—0 and may safely be neglected, and we con- ~ - ’ (9)
clude e (y =119,

/1/2/yL VS yL and

W(/)~YL>< t /1/2< (4)
cons / Vi - 112 (y, <I%?),
. . W sor (y, >112) (10

Thus, xe goes to zero as the self-affine excursions of the Yo '

interface are blurred by the thickness of the interfacg as 172 _ _ . .
becomes greater thafi’2 We see that foy, > the interfacial region becomes iso-

If one considers coarse-grained width functions, either b)}‘r_oplc, V_V',t,h Cx~Ch. This regime is characterized by an
taking the average height at any given point or the maximum 'SOtrOPIC rggghness exponentiso—2/3. In the opposite

[20] height fore>0 (minimum fore<0), one finds that they |Imllt, Ch~C)“, as expected for.the_self-afflne Eden surfac_e.
obey the scaling fornfl) with KPZ exponents for’<L. This crossover is clearly seen in Fig. 6. In accordance with

To get the local scaling picture, we focus on a single

spanning string in the interface and consider
Cul)=([x(r+1)=x(r) 1" (5
Ch(D=([h(r+1)=h(r)]>)*2. (6) 0-
—

) >‘f 0 e=0.001
where bothr and| are the(“chemical”) length measured _ © £=0.003
along the string, anal andh are Cartesian coordinates of the | = 4 €=0.005
interface site. The scaling relations we have found from Fig. 2, Bhe
5 for these quantities are given below. In the transient regimeS -2 - > £=0.1
(I >tl/2), +8=0.2

x £=0.3
| y|_< | 12 * e=0.4
iy v 4 ‘ ‘ ‘
-4 -2 0 2 4
and In(C,/y,)
Ch’\“tﬁ, (8)

FIG. 6. The vertical projectiorCy, of sections of the singly
connected part, plotted as a function of the horizontal projection
where = 1/6. Cy.
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the above observations we propose the following scalingcaling relatior(16) yields 3= 1/2, from Eqs(14) and(15) it

functions for the whole range af. Definingu=1/t*? ands

=y, /1X, we have

follows that¢=1/6 and{=2. The fractal dimension of the
self-similar set of interface sitd49] within a band of width
y.~|e|~" is found, from boxcounting, to beD,=1.85

Ch~an(e)t’f(u,s), +0.05 for length scaleg'<y?.

1z 11 In conclusion, we have presented an absorption-reaction
Ci~ax(e)t™g(u,s), model where the interface undergoes a delocalization transi-
tion at the point where the mean velocity of the interface

where goes to zero. Although it might be conjectufdd that as the
const, us>1 velocity of the interface vanishes, th.e.scaling .behav_ior
should cross over to the Edwards-Wilkinson universality
f(u,s)~y U¥, u<l, s<1 (12)  class, this is not the case here. It has previously been ob-
usz, u<1, s>1, served[20,21], that the presence of overhangs, islands and
inclusions may cause the small-scale structure of the inter-
and face to crossover from being self-affine to self-similar while
the large-scale behavior remains self-affine. In the present
u, s<1 model, this crossover is driven by a competing length scale,
g(u,s)~4 U¥/s, u>1, s>1 (13) the thickness of the interface, which diverges at the critical

point as|e|~” with »=1/2. In the critical region, the inter-

face is characterized by a set of exponegpt®¥'=2/3, B
=1/2, (=2, y=1/6, and the fractal dimensiob,=1.85.
Except forv andD, , these exponents may be obtained from
the KPZ exponents via scaling relations.

It should finally be mentioned that the reaction region can
be described by stochastic differential equations of the mul-
tiplicative noise type with a single component field, since in

~ 1 xKP? our model interface sites cannot be created spontaneously
=B~ xpzt+ Sxpz (14)  either in the bulk or the vacant region. A field-theoretic
renormalization-group computation similar to that by Tu,
and Grinstein, and Muaz [22] is presently under way to obtain
the values of the critical exponents.

s VP <1, s>1.

wherey, z, andg have their KPZ values. The amplitudes are
defined as a,(e)=(a+|e|¥®) and a,=1/(a"1+|elY9),
wherea is some constant.

From these scaling forms and E) we see that the new
critical exponents obey the relationships

isot_ . KPZ/_KPZ
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